

GENERAL CATALOGUE

EMIRATES EXTRUSION FACTORY LLC WHOLLY OWNED BY MASHARIE LLC

ABOUT US

Emirates Extrusion Factory LLC – a subsidiary of M'Sharie LLC, the private equity arm of Dubai Investments PJSC, was established in 1993 in Ajman, UAE where it has gained a renowned position over the years for being one of the most dynamic and innovative aluminum extrusion companies in the Middle East.

The investments in technology made in recent years and our employees' high level of expertise have enabled us to offer a wide variety of aluminum extrusions and profiles that meet our customers' specific needs. Our reputation for excellence is based on quality and innovation.

Aside from the primary extrusion production, Emirates Extrusion also provides a full-range of on-site services like powder coating, anodizing and thermal break, all in one roof, under our control. We focus primarily on producing superior quality products and finishing with high precision tolerances.

Competitively priced, our aluminum profiles are supplied for various markets including architectural, consumer products, transportation and industrial products. All our products comply with BS, EN and ISO 9001 standards.

The company's workforce, who consists of about 200 skilled engineers, operators and administrative staff, serves more than a hundred customers in different countries of Middle East, Asia, Europe and Africa. Therefore, if you're looking for finished aluminum extrusions, including powder coated, anodized, and thermal break profiles, then Emirates Extrusion is your smart choice who can supply the right specifications for all your aluminum extrusions needs.

OUR MISSION

Is total customer satisfaction by providing outstanding quality products, service and value, and to continually improve our quality management system.

OUR VISSION

Is to be a leading aluminum
extrusion company in
the Gulf Region by
nurturing a winning network of
partners and building
mutual loyalty.

Managing Director Message

It is my great pleasure to reach out to our customers and prospective customers through the medium of the web

Emirates Extrusion Factory LLC is one of the most technologically advanced manufacturer of extruded aluminium products in the region.

We at Emirates Extrusion Factory LLC are looking at the future with a lot of optimism and are ready to make the best of opportunities with our high quality standards and strong relationship with our customers.

We recognize that the only lasting competitive advantage is providing high quality aluminum profiles to our clients at an affordable cost. Therefore, we are continuously focusing on the details that make for better quality and for improved manufacturing processes.

KHALFAN AL SUWAIDI Managing Director Emirates Extrusion Factory LLC

ALLOY GROUPS

GROUP 1

EN AW-6101A, EN AW-6101B, EN AW-6005, EN AW-6005A, EN AW-6106, EN AW-6008, EN AW-6060, EN AW-6063, EN AW-6063A, EN AW-6463

GROUP 2

EN AW-6012, EN AW-6018, EN AW-6351, EN AW-6061, EN AW-6261, EN AW 6262, EN AW-6081, EN AW-6082

BS EN 755-3 [Round Bars]

1. SCOPE

This part of EN 755 specifies the tolerance on dimensions and form for aluminum and aluminum alloy extruded round bars having diameter in the range from 8 mm up to 320 mm.

Т	able 1. Dian	neter tolerance	!S
		Dimensions	in millimeters
Diam	eter D	Toler	ances
Over	Up to	Alloy Group 1	Alloy Group 2
≥8	18	±0.22	±0.30
18	25	±0.25	±0.35
25	40	±0.30	±0.40
40	50	±0.35	±0.45
50	65	±0.40	±0.50
65	80	±0.45	±0.70
80	100	±0.55	±0.90
100	120	±0.65	±1.0
120	150	±0.80	±1.2
150	180	±1.0	±1.4
180	220	±1.15	±1.7
220	270	±1.3	±2.0
270	320	±1.6	±2.5

2. OVALITY

Ovality is the difference between the maximum and minimum diameters measured in one cross section.

The maximum permissible ovality is 50% of the tolerance ranged specified in table 1; e.g. for a diameter tolerance of ±0.22 mm, the maximum permissible ovality is 0.22 mm.

BS EN 755-4

[Square Bars]

1. SCOPE

This part of EN 755 specifies the tolerance on dimensions and form for aluminum and aluminum alloy extruded square bars having widths across flats from 10 mm to 220 mm.

2. Tolerance on dimensions and form

2.1 Width across flats

Table	e 1. Width a	cross flat tolera	ances
		Dimensions	in millimeters
Width ac	ross flat S	Toler	ances
Over	Up to	Alloy Group 1	Alloy Group 2
≥10	18	±0.22	±0.30
18	25	±0.25	±0.35
25	40	±0.30	±0.40
40	50	±0.35	±0.45
50	65	±0.40	±0.50
65	80	±0.45	±0.70
80	100	±0.55	±0.90
100	120	±0.65	±1.0
120	150	±0.80	±1.2
150	180	±1.0	±1.4
180	220	±1.15	±1.7

2.2 Corner radii

Maximum corner radii are specified in table 2.

Ta	able 2. Maxi	mum corner ra	dii
		Dimensions	in millimeters
Width ac	ross flat S	Maximum	corner radii
Over	Up to	Alloy Group 1	Alloy Group 2
≥10	25	1.00	1.50
25	50	1.50	2.00
50	80	2.00	3.00
80	120	2.50	3.00
120	180	2.50	4.00
180	220	3.50	5.00

2.3 Squareness

The deviation from square shall be measured as shown in figure. Squareness tolerances are specified in Table 3.

T	Table 3. Squareness tolerance						
		Dimensions in millimeters					
Width ac	ross flat S	Maximum deviation from					
Over	Up to	square Z					
≥10	100	0.01 x width					
100	180	1.0					
180	220	1.5					

BS EN 755-5

1. SCOPE

This part of EN 755 specifies the tolerance on dimensions and form of aluminum and aluminum alloy extruded rectangular bars having thickness in the

range from 2 mm up to 240 mm and widths in the range from 10 mm up to 600 mm.

2. Tolerance on dimensions and form

2.1 Thickness and width

The tolerance on thickness and width are specified in Tables 1 and 2 below.

2.2 Corner Radii

Maximum Corner radii are specified in Table 3.

Та	ble 3. Maxi	mum corner Ra	dii
		Dimensions	in Millimeters
Thick	ness t	Maximum	corner radii
Over	Up to	Alloy group 1	Alloy group 2
≥2	10	0.60	1.0
10	30	1.0	1.5
30	80	1.8	2.5
80	120	2.0	3.0
120	180	2.5	4.0
180	240	3.5	5.0

		ŝ	Table 1. \	Width and	Thicknes	s tolerand	es for all	y group 1	L _{at}		
									Dime	nsions in N	1illimeters
	Width w	v			Thickne	ess t toler	ances for	thickness	ranges	-Ale	
Over	Up to	tolerance s	2 ≤ t ≤ 6	6 < t ≤ 10	10 < t≤ 18	18 < t ≤ 30	30 < t≤ 50	50 < t≤ 80	80 < t≤ 120	120 < t ≤ 180	180 < t ≤ 240
≥10	18	±0.25	±0.20	±0.25	±0.25		27	2	74	928	2
18	30	±0.30	±0.20	±0.25	±0.30	±0.30	-:	-	257	(4)	-
30	50	±0.40	±0.25	±0.25	±0.30	±0.35	±0.40	Ξ.	:	#2 \$#8	8
50	80	±0.60	±0.25	±0.30	±0.35	±0.40	±0.50	±0.60	*	-	-
80	120	±0.80	±0.30	±0.35	±0.40	±0.45	±0.60	±0.70	±0.80	11 7 741	- 5
120	180	±1.00	±0.40	±0.45	±0.50	±0.55	±0.60	±0.70	±0.90	±1.0	2
180	240	±1.40	1,50	±0.55	±0.60	±0.65	±0.70	±0.80	±1.0	±1.2	±1.4

			Table 2.	Width and	Thicknes	s toleran	ce for allo	y group 2	1		
									Dime	nsions in N	lillimeters
	Width w	,			Thickn	ess t tole	rance for	thickness	ranges		
Over	Up to	tolerance s	2 ≤ t ≤ 6	6 < t ≤ 10	10 < t≤ 18	18 < t ≤ 30	30 < t ≤ 50	50 < t ≤ 80	80 < t≤ 120	120 < t ≤ 180	180 < t ≤ 240
≥10	18	±0.35	±0.25	±0.30	±0.35		- E	Ē		3.	ž
18	30	±0.40	±0.25	±0.30	±0.40	±0.40			343	(=))	
30	50	±0.50	±0.30	±0.30	±0.40	±0.50	±0.50	5	3.T.S	ons:	
50	80	±0.70	±0.30	±0.35	±0.45	±0.60	±0.70	±0.70	72	ar:	2
80	120	±1.00	±0.35	±0.40	±0.50	±0.60	±0.70	±0.80	±1.0	(#0)	-
120	180	±1.40	±0.45	±0.50	±0.55	±0.70	±0.80	±1.0	±1.1	±1.4	2
180	240	±1.80	S#0	±0.60	±0.65	±0.70	±0.90	±1.1	±1.3	±1.6	±1.8

BS EN 755-7 [Round Tubes and Rectangular Tubes]

1. SCOPE

This part of EN 755 specifies the tolerances on dimensions and form for aluminum and aluminum (OD) from 8 mm to 450 mm (round tube, see figure 1) or with cross-section contained within a circumscribing circle (CD) from 10 mm to 350 mm (other than round tube, see figure 2), supplied in straight lengths.

Figure 1 - Round Tube

Figure 2 - Circumscribing Circle other than Round tube

		Tolerances o	n diameter for round	l tube	
				Dim	ensions in Millimeter
Diamete	* (OD o* ID)		Tolerances on	diameter	
Diamete	r (OD or ID)	Maximum allowable	Non-annealed and	11 21 27-21	
Over	Up to and including	deviation of mean diameter from specified	non-heattraeted tube (2)	Heat treated tube (3)	Annealed tube (4)
≥8	18	±0.25 (5)	±0.40 (5)	±0.60 (5)	±1.5 (5)
18	30	±0.30	±0.50	±0.70	±1.8
30	50	±0.35	±0.60	±0.90	±2.2
50	80	±0.40	±0.70	±1.1	±2.6
80	120	±0.60	±0.90	±1.4	±3.6
120	200	±0.90	±1.4	±2.0	±5.0
200	350	±1.4	±1.9	±3.0	±7.6

(1) Not applicable to tubes having a wall thickness less than 2.5% of the specified outside diameter. The tolerance of the tubes with wall thickness less than 2.5% of the specified outside diameter shall be determined by multiplying the applicable tolerance as follows.

wall thickness over 2.0% up to and including 2.5% of outside diameter: 1.5 X tolerance;
wall thickness over 1.5% up to and including 2.0% of outside diameter: 2.0 X tolerance;
wall thickness over 1.0% up to and including 1.5% of outside diameter: 3.0 X tolerance;
wall thickness over 0.5% up to and including 1.0% of outside diameter: 4.0 X tolerance;

- (2) Applies in all alloys in F or H112 tempers.
- (3) Applies in all alloys in T4, T5, T6, T64, T66, and Tx511 tempers.
- (4) Applies to all alloys in O, H111 and Tx510 tempers.
- (5) This tolerance applies for outside diameter only. i.e. tube in this size range can be specified as "Outside Diameter X wall Thickness".
- (6) Not applicable to Tx510 or Tx511 tempers.

		Tol	erances or	n width, de	pth or wid	th across f	lats		
				342	1117		Dim	ensions in	millimeters
Width de	pth or width		Toler	ances on v	vidth, dept	th or width	across flat	ts (1)(2)	
acro	ss flats	CD s	100	100< C	D ≤ 2 00	200 < 0	D ≤ 3 00	300 < C	D ≤ 350
Over	Up to and including	Alloy group 1	Alloy group 2						
5000	10	±0.25	±0.40	±0.30	±0.50	±0.35	±0.55	±0.40	±0.60
10	25	±0.30	±0.50	±040	±0.70	±0.50	±0.80	±0.60	±0.90
25	50	±0.50	±0.80	±0.60	±0.90	±0.80	±1.0	±0.90	±1.2
50	100	±0.70	±1.0	±0.90	±1.2	±1.1	±1.3	±1.3	±1.6
100	150	Α	340	±1.1	±1.5	±1.3	±1.7	±1.5	±1.8
150	200		A RE	±1.3	±1.9	±1.5	±2.2	±1.8	±2.4
200	300	9	949	(2)	4	±1.7	±2.5	±2.1	±2.8

(1) Not applicable to tubes having a wall thickness less than 2.5% of the specified outside width, depth or width across flats. The tolerance of the tubes with wall thickness less than 2.5% of the specified width, depth or width across flats shall be determined by multiplying the applicable tolerance as follows.

wall thickness over 2.0% upto and including 2.5% of outside diameter: 1.5 X tolerance.	
wall thickness over 1.5% upto and including 2.0% of outside diameter: 2.0 X tolerance.	
wall thickness over 1.0% upto and including 1.5% of outside diameter: 3.0 X tolerance.	
wall thickness over 0.5% upto and including 1.0% of outside diameter: 4.0 X tolerance.	

(2) This tolerance do not apply to tempers O and Tx510. For this tempers the tolerance shall be subject to agreement between the supplier and purchaser.

	Tolerances on wall thickness	ss for round tubes
Nom	inal wall thickness t mm	Tolerance on wall
Over Upto and including		thickness measured at any point %
≥0.5	2	±10
2	3	±9
3	(T e	±8

	Tolerance on wal	l thickness	for other t	than round	tubes		
					Dim	ensions in	millimete
Naminal	Annua Farra Franco III a Franco Francoura		rance on t	hickness fo	or circumso	ribing circl	e CD
Nominal wall thickness t		CD s	100	100< 0	D ≤ 200	300 < 0	D ≤ 350
Over	Up to and including	Alloy group 1	Alloy group 2	Alloy group 1	Alloy group 2	Alloy group 1	Alloy group 2
≥0.5	1.5	±0.25	±0.35	±0.35	±0.50	290	7
1.5	3	±0.30	±0.45	±0.50	±0.65	±0.75	±0.90
3	6	±0.50	±0.60	±0.75	±0.90	±1.0	±1.2
6	10	±0.75	±1.0	±1.0	±1.3	±1.2	±1.5
10	15	±1.0	±3.0	±1.2	±1.7	±1.5	±1.9
15	20	±1.5	±1.9	±1.9	±2.2	±2.0	±2.5
20	30	±1.9	±2.2	±2.2	±2.7	±2.5	±3.1
30	40	(H)	-	±2.5	(9 0)	±2.7	-

BS EN 755-9

1. SCOPE

This part of EN 755 specifies the tolerance on dimensions and form for aluminium and aluminium alloy extruded profile with a cross section contained with a circumscribing circle not greater than 800mm.

This standard applies to extruded profiles for general engineering applications only.

The Tolerance in this standard only apply to those dimensions that can be physically measured.

2. Tolerance on dimensions

2.1 Cross-sectional dimensions

2.1.1 General

The tolerances on the dimensions below are specified in the relevant tables.

A: wall thickness except those enclosing the hollow spaces in hollow profiles;

B: wall thickness enclosing the hollow spaces in hollow profiles except those between two hollow spaces;

C: wall thickness between two hollow spaces in hollow profiles;

E: the length of the shorter leg of profiles with open ends;

H: all dimensions except wall thickness.

Definition of dimensions A, B, C, E, H

				Dim	ensions in	millimeters
Dir	mension H	Toleran	ce on H for	circumscr	ibing circle	CD (a)(b)
Over	Up to and including	CD ≤ 100	100 < CD ≤ 200	200 < CD ≤ 300	300 < CD ≤ 500	500 < CD ≤ 800
3 7	10	±0.25	±0.30	±0.35	±0.40	±0.50
10	25	±0.30	±0.40	±0.50	±0.60	±0.70
25	50	±0.50	±0.60	±0.80	±0.90	±1.0
50	100	±0.70	±0.90	±1.1	±1.3	±1.5
100	150	((*)	±1.1	±1.3	±1.5	±1.7
150	200	66	±1.3	±1.5	±1.8	±2.0
200	300	298	(#S)	±1.7	±2.1	±2.4

A) These tolerances do not apply to tempers O and Tx510. For these tempers, the tolerances shall be subject to agreement between the supplier and the purchaser.

B) For profiles with open ends, see figures, the tolerance for H in the area of the open ends shall be increased by the values specified in Table 3.

				Dim	nensions in	millimeters
Dir	mension H	Toleran	ce on <i>H</i> for	circumscr	ibing circle	CD (a)(b)
Over	Up to and including	CD ≤ 100	100 < CD ≤ 200	200 < CD ≤ 300	300 < CD ≤ 500	500 < CD ≤ 800
2	10	±0.40	±0.50	±0.55	±0.60	±0.70
10	25	±0.50	±0.70	±0.80	±0.90	±1.1
25	50	±0.80	±0.90	±1.0	±1.2	±1.3
50	100	±1.0	±1.2	±1.3	±1.6	±1.8
100	150	(4)	±1.5	±1.7	±1.8	±2.0
150	200	17.)	±1.9	±2.2	±2.4	±2.7
200	300	37 1	¥	±2.5	±2.8	±3.0

		Dimensions in millimeters
Dimension H		Additions to the tolerances on H in tables 1 and 2
Over	AND THE PROPERTY OF THE PROPER	for dimensions across the end of open ended profiles
7/72	20	(B)
20	30	±0.15
30	40	±0.25
40	60	±0.40
60	80	±0.50
80	100	±0.60
100	125	±0.80
125	150	±1.0
150	180	±1.2
180	210	±1.4
210	250	±1.6
250	3 4 5	±1.8

The determination to tolerance on cross-sectional dimension H is shown in the following calculation.

Examples of tolerances calculation across open ended profiles.

EXAMPLE 1

Dimension H: 20 mm
Dimension E: 100 mm
Circumscribing circle CD 100 mm to 200 mm

Alloy group 1

The tolerance on H according to table 1 is ± 0.40 mm; plus the additional tolerances according to Table 3 which is ± 0.60 mm; total tolerances on H are ± 1.0 mm.

Solid profile with open end

2.1.2 Tolerance on wall thickness of solid and hollow profiles

			roup 1		5!	ensions in	
		1	Same of the State		2330		millimeters
Nominal wal	I thickness A, B or C	2000 00 7 3		erances on	wall thickr	CONTROL OF A	y W
Homman wan unckness A, b or C		Wall thi	ckness A	Wall thic	kness B (a)	Wall thi	ckness C
Over	Upto and including	CD ≤ 100	100< CD ≤ 300	CD ≤ 100	100< CD ≤ 300	CD ≤ 100	100< CD ≤ 300
æ	1.5	±0.15	±0.20	±0.20	±0.30	±0.25	±0.35
1.5	3	±0.15	±0.25	±0.25	±0.40	±0.30	±0.50
3	6	±0.20	±0.30	±0.40	±0.60	±0.50	±0.75
6	10	±0.25	±0.35	±0.60	±0.80	±0.75	±1.0
10	15	±0.30	±0.40	±0.80	±1.0	±1.0	±1.2
15	20	±0.35	±0.45	±1.2	±1.5	±1.5	±1.9
20	30	±0.40	±0.50	±1.5	±1.8	±1.9	±2.2
30	40	±0.45	±0.60	4	±2.0	3.	±2.5
40	50	1	±0.70	5	672		

		Alloy g	roup z		254400423		
					Dim	ensions in	millimeters
Naminalual	I thickness A, B or C		Tole	rances on	wall thickr	ness	
NOMINAL WA	il direktiess A, B of C	Wall thi	ckness A	Wall thic	kness B (a)	Wall thi	ckness C
Over	Upto and including	CD ≤ 100	100< CD ≤ 300	CD ≤ 100	100 <cd≤ 300</cd≤ 	CD ≤ 100	100< CD ≤ 300
(32)	1.5	±0.20	±0.25	±0.30	±0.40	±0.35	±0.50
1.5	3	±0.25	±0.30	±0.35	±0.50	±0.45	±0.65
3	6	±0.30	±0.35	±0.55	±0.70	±0.60	±0.90
6	10	±0.35	±0.45	±0.75	±1.0	±1.0	±1.3
10	15	±0.40	±0.50	±1.0	±1.3	±1.3	±1.7
15	20	±0.45	±0.55	±1.5	±1.8	±1.9	±2.2
20	30	±0.50	±0.60	±1.8	±2.2	±2.2	±2.7
30	40	±0.60	±0.70		±2.5	970	=
40	50	826	±0.80	2	641	726	2

3. Tolerance on form

3.1 Straightness

Deviation from straightness, hs and ht, shall be measured as shown in the figure with the profile placed on a horizontal base plate so that its own mass decreases the deviation.

The Straightness tolerance ht, shall not exceed 1.5 mm/m length. Local deviation hs from straightness shall not exceed 0.6 mm/300mm length.

Key

- 1 Baseplate
- 2 Ruler

Key

1 Baseplate

Measurement of deviation from straightness

3.2 Convexity - Concavity

The convexity – concavity shall be measured as shown in the figure. The maximum allowable deviation on convexity – concavity for solid and hollow profiles shall be as specified in Table 6 as a function of profile thickness width W and thickness t.

			Dime	nsions in millime
	A/: deb \A/		Deviation F	
Width W		Hollow p	rofiles (a)	02 VVIII 192V
Over	Upto and including	Wall thickness t≤5	Wall thickness t < 5	Solid profiles
vē.	30	0.30	0.20	0.20
30	60	0.40	0.30	0.30
60	100	0.60	0.40	0.40
100	150	0.90	0.60	0.60
150	200	1.2	0.80	0.80
200	300	1.8	1.2	1.2

In any case of solid and hollow profiles with the width W of at least 150 mm, the local deviation F1, shall not exceed 0.7 mm for any 100 mm of width W1.

3.3 Twist

Twist T shall be measured as shown in the figure by placing the profile on the flat baseplate the profile resting under own mass, and measuring the maximum distance at any point along the length between the bottom surface of the profile and the basplate surface. Tolerance shall be as specified in Table 7 as a function of the width W and the length L of profile.

Key

1 Baseplate

Measurement of twist

	1	able 7 - Twist tolerance		At the territory of the contract of the contra		
			Dime	nsions in millimeters		
N	Width W	Twist	Twist tolerance T for length L			
			On total profile length L			
Over	Upto and including	Per 1000 of length (a)	Over 1000 and including 6000	Over 6000		
	30	1.2	2.5	3.0		
30	50	1.5	3.0	4.0		
50	100	2.0	3.5	5.0		
100	200	2.5	5.0	7.0		
200	300	2.5	6.0	8.0		

2.4 Angularity

The deviation from a specified angle shall be measured as show in the figure below. The angularity tolerance for the right angles shall be specified in Table 8 as a function of profile width W. The maximum allowable deviation a in an angle other than a right angle shall be $\pm 1^{\circ}$.

In the case of unequal side lengths the tolerance on the angularity shall apply to the shorter side of the angle, i.e. it is measured starting from the longer side.

Measurement of angularity in a right angle

Measurement of angularity in an angle other than a right angle

EMIRATES EXTRUSION FACTORY LLC

	Table 8 - Angu	larity tolerances for right angles
	****	Dimensions in millimeters
9	Width W	Maximum allowable deviation, Z from a right angle
Over	Upto and including	Maximum allowable deviation, 2 from a right angle
×	30	0.4
30	50	0.7
50	80	1.0
80	120	1.4
120	180	2.0
180	240	2.6
240	300	3.1
300	400	3.5

TABLE OF CONTENTS

Sliding Profiles	001
Hinged Profiles	039
Curtainwall Profiles	085
Handrail and Balustrade Profiles	107
Claustra Profiles	113
Panel and Kickplate Profiles	117
Louver and Sun Breaker Profiles	121
Fixed Light Profiles	127
Door handle and Treshold Profiles	135
Kitchen profiles	137
A/C Profiles	147
Tent Profiles	151
Scaffolding and Ladder Profiles	155
Exhibition and Internal Decoration Profiles	165
Boat Profiles	169
Camel Race Profiles	173
Signbaord Profiles	175
Crimping Angle Profiles	177
Omega Profiles	184
Ceiling Profiles	184
Shaft Profiles	185
Angle Tube Profiles	186
Decorated Post Profiles	188
Square Hollow Sections	192
Rectangular Hollow Sections	194
Round Tubes	197
Equal Angle Profiles	199
Unequal Angle Profiles	201
U Chanel Profiles	202
Flat Bar Profiles	204
Square Bar Profiles	207
Round Bar Profiles	207

INDEX AT THE BACK PAGE

EMIRATES EXTRUSION FACTORY LLC

	Table 8 - Angu	larity tolerances for right angles
	****	Dimensions in millimeters
	Width W	Maximum allowable deviation, Z from a right angle
Over	Upto and including	Maximum allowable deviation, 2 from a right angle
#	30	0.4
30	50	0.7
50	80	1.0
80	120	1.4
120	180	2.0
180	240	2.6
240	300	3.1
300	400	3.5

TABLE OF CONTENTS

Sliding Profiles	001
Hinged Profiles	039
Curtainwall Profiles	085
Handrail and Balustrade Profiles	107
Claustra Profiles	113
Panel and Kickplate Profiles	117
Louver and Sun Breaker Profiles	121
Fixed Light Profiles	127
Door handle and Treshold Profiles	135
Kitchen profiles	137
A/C Profiles	147
Tent Profiles	151
Scaffolding and Ladder Profiles	155
Exhibition and Internal Decoration Profiles	165
Boat Profiles	171
Camel Race Profiles	173
Signbaord Profiles	175
Crimping Angle Profiles	177
Omega Profiles	184
Ceiling Profiles	184
Shaft Profiles	185
Angle Tube Profiles	186
Decorated Post Profiles	188
Square Hollow Sections	192
Rectangular Hollow Sections	194
Round Tubes	
Equal Angle Profiles	
Unequal Angle Profiles	
U Chanel Profiles	
Flat Bar Profiles	204
Square Bar Profiles	207
Round Bar Profiles	207

SLIDING PROFILES

1653 1.2mm 0.637 kg/m

22

1224 1.5mm

0.770 kg/m

2333 1.4mm

2333A 1.2mm

0.525 kg/m

0.456 kg/m

21.6

2806 1.3mm

0.813 kg/m

0.357 kg/m

HINGED PROFILES

CURTAIN WALL PROFILES

55

196 3.7mm

1.668 kg/m

HANDRAIL PROFILES

EMIRATES EXTRUSION FACTORY LLC

CLAUSTRA PROFILES

PANEL PROFILES

LOUVER PROFILES

FIXED LIGHTS PROFILES

DOOR HANDLES AND TRESH HOLDS PROFILES

KITCHEN PROFILES

EMIRATES EXTRUSION FACTORY LLC

EMIRATES EXTRUSION FACTORY LLC

A/C PROFILES

TENT PROFILES

SCAFFOLDING AND LADDER PROFILES

EMIRATES EXTRUSION FACTORY LLC

EXHIBITION AND DECORATION PROFILES

BOAT PROFILES

CAMEL RACE PROFILES

SIGNBOARD PROFILES

CRIMPING ANGLE PROFILES

OTHER PROFILES

STANDARD PROFILES

DIE NO:	A (mm)	-	T (mm)	Weight KG/M
4529	16.00		3.00	0.421
2307	20.00		1.00	0.205
4072	20.00	_	1.50	0.299
2307A	20.00	-	1.80	0.355
4431	20.00	-	1.90	0.372
2648	20.00		3.00	0.551
4469/4509	25.00	eners Date	2.00	0.497
2880	25.00		2.50	0.607
2646	25.00	5000 5000	3.00	0.713
2417	30.00	000	1.90	0.577
2417A	30.00		3.00	0.875
2755	35.00		1.10	0.403
6739	35.00	गल	4.00	1.339
2571	40.00		0.90	0.380
2699	40.00	**	0.95	0.400
391A	40.00		1.00	0.425
391	40.00		1.30	0.545
2303A	40.00		1.80	0.745
2303	40.00	==	2.00	0.822
2615	40.00		3.00	1.199
2610	40.00	2007	4.00	1.555
2523	45.00		2.00	0.929
2400	50.00		1.20	0.635
2786	50.00	7000	1.50	0.786
2641	50.00		1.80	0.937
4432	50.00		2.00	1.037
2570	50.00		2.50	1.283
4433	50.00		2.80	1.427
2320	50.00		3.00	1.525
7658	50.00	100	4.00	1.987
4376*	60.00	-	2.50	1.531
2481	60.00		4.00	2.419

DIE NO:	A (mm)		T (mm)	Weight KG/M
6738	60.00	188	4.00	2.419
4382*	70.00		2.50	1.801
4226	70.00		2.50	1.823
4107	75.00		2.00	1.577
2503	80.00		1.80	1.521
2576	80.00		3.00	2.495
2304	100.00		2.00	2.120
4627	100.00		3.00	3.143
4181	100.00	20	4.00	4.147
2899	100.00	MONE Control	8.00	7.948
4097	103.00		12.50	12.218

* ROUND CORNERS

□ RECTANGULAR HOLLOW SECTION (SHS) RECTANGULAR TUBES

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
2311	20.00	10.00	1.00	0.155
2586	20.00	10.00	1.50	0.220
2587*	30.00	20.00	1.20	0.298
2588*	35.00	20.00	1.20	0.330
4675	38.00	15.00	1.50	0.405
2512	40.00	15.00	1.20	0.345
2955	40.00	20.00	0.90	0.284
7126	40.00	20.00	1.00	0.313
2702	40.00	20.00	1.15	0.343
2340	40.00	20.00	1.20	0.380
2986	40.00	20.00	1.50	0.462
2568	40.00	20.00	1.80	0.548
2565	40.00	20.00	3.00	0.875
2395*	40.00	30.00	1.80	0.650
7171	44.50	12.50	1.00	0.464
2756	50.00	25.00	1.00	0.394
4033	50.00	25.00	2.00	0.767
4454	50.00	25.00	2.50	0.945
2931*	50.00	25.00	3.00	1.118
7657	50.00	25.00	3.00	1.118
2326	60.00	30.00	1.20	0.575
4554	60.00	30.00	1.80	0.840
4589	60.00	30.00	2.00	0.929
4252	60.00	40.00	1.80	0.937
2601	60.00	40.00	3.00	1.523
2865	60.00	40.00	3.00	1.523
4242	60.00	50.00	1.80	1.034
4647	60.00	50.00	2.80	1.578
2757	70.00	25.00	1.00	0.502
4430	70.00	50.00	5.00	2.970
7417	70.00	60.00	3.00	2.008
4644	75.00	25.00	3.00	1.522

□ RECTANGULAR HOLLOW SECTION (SHS) RECTANGULAR TUBES

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
2592	78.00	38.00	0.80	0.494
2728	80.00	15.00	0.90	0.454
2701	80.00	15.00	1.00	0.502
2306	80.00	20.00	1.20	0.632
4591	80.00	20.00	2.00	1.037
2338	80.00	38.00	1.10	0.700
2954	80.00	40.00	0.90	0.575
2698	80.00	40.00	1.08	0.688
2430A	80.00	40.00	1.20	0.762
2430	80.00	40.00	1.25	0.795
277	80.00	40.00	1.50	0.954
2812	80.00	40.00	1.80	1.131
7656	80.00	40.00	2.00	1.253
2564	80.00	40.00	3.00	1.847
2337	95.00	38.00	1.10	0.780
2337A	95.00	38.00	1.20	0.846
2666	98.00	38.00	1.00	0.724
2685A	100.00	15.00	0.90	0.551
2622	100.00	15.00	1.20	0.732
2305	100.00	20.00	1.20	0.762
4318	100.00	20.00	1.40	0.886
2980	100.00	20.00	2.00	1.253
4241	100.00	35.00	1.20	0.859
2744	100.00	40.00	0.90	0.672
2327	100.00	40.00	1.00	0.745
2327A	100.00	40.00	1.10	0.820
2327B	100.00	40.00	1.20	0.892
2514	100.00	40.00	1.40	1.038
2327C	100.00	40.00	2.00	1.470
2830	100.00	40.00	4.00	2.851
276	100.00	50.00	1.50	1.192
276A	100.00	50.00	1.80	1.430
2566	100.00	50.00	2.00	1.577

□ RECTANGULAR HOLLOW SECTION (SHS) □ RECTANGULAR TUBES

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
2616	100.00	50.00	2.50	1.958
4663	100.00	50.00	2.80	2.183
2647	100.00	50.00	3.00	2.333
2321	100.00	50.00	3.50	2.705
2814	100.00	50.00	5.00	3.780
2482	100.00	60.00	4.00	3.283
4510	100.00	75.00	2.00	1.847
2811	130.00	15.00	1.20	0.923
2611	131.50	60.00	2.50	3.183
4628	140.00	40.00	1.90	1.808
4315	140.00	50.00	2.00	2.009
4588	150.00	50.00	2.00	2.117
4160	150.00	50.00	3.00	3.143
4590	150.00	75.00	3.00	3.548
4640	150.00	100.00	2.40	3.179
4316	150.00	100.00	3.00	3.953
4163	160.00	30.00	2.50	2.497
7066	160.00	30.00	5.00	4.860
2549	180.00	70.00	10.00	12.420
W28082	200.00	50.00	2.00	2.659
4637	200.00	80.00	3.00	4.439
4676	200.00	100.00	2.50	3.983
4629	200.00	100.00	4.00	6.307

^{*} ROUND CORNERS

DIE NO:	0D (mm)	ID (mm)	T (mm)	Weight KG/M
4334	8.00	6.00	1.00	0.059
7106	16.00	13.00	1.50	0.186
4448	16.00	12.00	2.00	0.238
4470	17.50	11.50	3.00	0.370
2589	18.00	14.60	1.70	0.210
4472	19.00	5.00	7.00	0.713
284	20.50	18.00	1.25	0.204
2784	21.50	18.70	1.40	0.238
271	22.00	19.00	1.50	0.265
7100	25.40	22.20	1.60	0.325
7075	30.00	24.00	3.00	0.687
2943	30.00	17.50	6.25	1.258
2483	33.50	25.50	4.00	1.001
274	40.00	34.00	3.00	0.950
2550	40.00	31.00	4.50	1.355
7121	44.00	34.00	5.00	1.655
4552	44.50	34.50	5.00	1.674
7140	45.50	39.50	3.00	1.083
272	48.00	40.00	4.00	1.492
4441	50.00	46.20	1.90	0.775
4442	50.00	44.20	2.90	1.158
275	50.00	44.00	3.00	1.196
2854	50.00	40.00	5.00	1.909
4508	50.80	48.40	1.20	0.505
7124	50.80	47.30	1.75	0.729
4117	60.00	56.00	2.00	0.983
273	60.00	54.00	3.00	1.460
7122	60.00	50.90	4.55	2.141
4118	65.00	61.00	2.00	1.069
7992	70.00	66.00	2.00	1.153
4449	75.00	71.00	2.00	1.239
7107	75.00	69.00	3.00	1.832

DIE NO:	0D (mm)	ID (mm)	T (mm)	Weight KG/M
2853	75.00	59.00	8.00	4.547
4233	80.00	76.00	2.00	1.323
7074	90.00	85.00	2.50	1.856
4101	90.00	83.60	3.20	2.357
4587	100.00	96.00	2.00	1.663
4073	100.00	95.00	2.50	2.068
2975	100.00	94.00	3.00	2.468
4071	120.00	100.00	10.00	9.331
4098	145.00	120.00	12.50	14.048
4099	152.00	139.00	6.50	8.022
4100	152.00	145.60	3.20	4.039
7016	179.00	169.00	5.00	7.380

EQUAL ANGLES

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1397A	15.00	222	1.10	0.086
1397	15.00		1.20	0.095
1604	20.00	2000 2000 2000	1.05	0.111
1428	20.00	23	1.20	0.126
9090	20.00	25	1.40	0.146
155	20.00	N am	1.50	0.168
9174	20.00	ISS.	3.00	0.300
1472	20.50		1.80	0.200
5171	20.50	i s a	1.80	0.200
1820	22.50		5.00	0.540
1602	25.00		1.15	0.151
9175	25.00		1.50	0.197
156	25.00		2.00	0.259
1603	30.00		1.10	0.175
1471	30.00		1.30	0.215
1316	30.00		1.50	0.240
1626	30.00		2.50	0.389
1683	30.00	120 E	2.50	0.385
1308	30.00	25	3.00	0.461
157	30.00	lases.	5.00	0.742
1454	30.50		2.50	0.387
1317	32.00		4.00	0.650
1210	34.00	GE.	3.20	0.570
1229	38.00		2.50	0.500
1228	38.00		3.80	0.740
183	40.00		1.20	0.256
172	40.00		2.00	0.422
1611	40.00		2.50	0.524
158	40.00		3.00	0.623
1627	40.00	22	3.50	0.724
1329	40.00		3.70	0.765
1234	40.00		4.00	0.820

EMIRATES EXTRUSION FACTORY LLC

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1230	48.00		2.80	0.705
1231	48.00	-	4.80	1.180
182	50.00		1.20	0.320
1610	50.00	<u></u>	3.00	0.786
1434	50.00		5.00	1.283
9123*	65.00		6.00	2.065
1203	100.00	88	10.00	5.135

^{*} CHECK WITH TECHNICAL PERSON

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1444	20.00	12.00	1.50	0.125
159	30.00	20.00	1.50	0.196
1315	30.00	20.00	2.00	0.260
1685	30.00	25.00	4.00	0.551
6108	31.00	21.00	2.30	0.307
1621	28.00	33.00	2.80	0.516
9189	40.00	20.00	3.00	0.462
1915	40.00	30.00	4.00	0.713
1318	40.00	32.00	2.00	0.380
1756	40.00	35.00	3.00	0.583
9038	48.00	26.00	1.00	0.197
1258	50.00	15.00	2.00	0.340
9122	50.00	20.00	1.90	0.349
1256	60.00	30.00	1.30	0.315
161	66.50	44.50	4.00	1.156
160	70.00	25.00	2.00	0.502
1559	75.00	44.00	4.00	1.242
162	75.00	50.00	3.00	0.988
1558	76.00	13.00	1.80	0.424
1734*	100.00	60.00	8.00	3.321
1306	130.00	50.00	8.00	3.720
9173	150.00	100.00	8.00	5.227

^{*} CHECK WITH TECHNICAL PERSON

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
6360*	14.50	5.00	1.50	0.086
9042	14.60	14.60	1.00	0.113
9043	15.00	18.00	1.00	0.132
1780	15.00	35.00	2.20	0.478
9128	16.00	28.00	1.00	0.189
6265	18.00	7.00	3.00	0.189
1659	18.00	25.00	3.00	0.502
1556	20.00	15.00	1.50	0.191
1257	20.00	20.00	1.50	0.235
143	20.00	20.00	2.00	0.302
1809	20.00	30.00	1.50	0.312
9149	21.00	60.00	2.00	0.740
1663	23.00	10.00	1.60	0.173
5146	23.30	6.40	1.40	0.130
1470	23.30	6.40	1.40	0.130
1267	25.00	20.00	1.30	0.230
173	25.00	20.00	1.60	0.267
1917	25.00	80.00	3.50	1.674
6206	30.00	20.00	2.00	0.356
9202	30.00	100.00	3.00	1.814
6222	31.80	12.70	3.20	0.438
6264	34.00	8.00	3.00	0.356
5172*	34.60	24.80	N==X	0.750
9145	37.80	20.00	2.50	0.491
184	40.00	20.00	1.00	0.211
1223	40.00	20.00	1.30	0.275
144	40.00	20.00	1.80	0.371
1919	40.00	25.00	2.00	0.464
1314	40.00	32.00	3.00	0.800
171	46.00	20.00	1.80	0.401
6263	57.00	8.00	4.00	0.702
1440	70.00	40.00	10.00	3.510

EMIRATES EXTRUSION FACTORY LLC

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1684	76.00	40.00	3.00	1.215
6086	76.00	45.00	6.00	2.495
9181	76.00	50.00	6.35	2.800
1984	100.00	20.00	1.50	0.545
9029	100.00	25.00	1.20	0.478
146	101.00	41.45	1.80	0.880
145	102.00	50.00	3.00	1.588
6314*	114.00	11.50	4.00	1.515
6315*	144.00	11.50	4.00	1.839
1961	150.00	60.00	4.00	2.830

 ^{*} CHECK WITH TECHNICAL PERSON

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
9176	16		3.00	0.130
1605**	18.70		4.00	0.194
9138	19.00		3.00	0.154
9146*	25.00	<u></u>	6.00	0.405
1855	29.50		14.50	1.156
1785**	30.00	<u> </u>	3.50	0.281
1522**	30.00		4.00	0.324
1715	30.00		15.00	1.212
1374**	30.00		25.00	2.010
1505	40.00	1505	2.00	0.216
1622	40.00		3.00	0.324
1433	40.00		5.00	0.540
9131	40.00		10.00	1.080
1545	40.00		20.00	2.160
1307**	45.00		35.00	4.255
6757	50.00		5.00	0.675
1874**	50.00		5.00	0.662
1441	50.00		6.00	0.810
1324**	50.00		10.00	1.350
9194	50.00	==	10.00	1.350
1775	50.00		12.00	1.620
1544	50.00	Ea	20.00	2.700
1861	50.00		25.00	3.375
9192	65.00		15.00	2.633
1774	65.00		50.00	8.775
1452**	73.00		3.00	0.567
1773	75.00		60.00	12.150
1476*	75.00		70.00	14.175
6741	80.00		5.00	1.080
1450**	80.00		8.00	1.728
6740	80.00		10.00	2.160
1484	80.00		20.00	4.320

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/N
1488	83.00		10.00	2.160
1489	87.00		10.00	2.349
1490	90.00		10.00	2.430
1474	90.00	1272	20.00	4.860
1491	94.00	222	10.00	2.538
1482	95.00	125	10.00	2.565
1480	95.00		20.00	5.130
1492	98.00	3 1227	10.00	2.646
6758	100.00	255.55	5.00	1.350
1477	100.00		50.00	13.500
6759	115.00	(2.0. 0)	6.00	1.863
1699***	115.00	:==	10.00	2.835
1690***	115.00	:==	20.00	5.743
1836	120.00		8.00	2.592
1487*	120.00		20.00	6.480
1485*	140.00		20.00	7.560
1723	148.00		20.00	7.992
6742	150.00		8.00	3.240
1493	150.00	-	12.00	4.860
1674	150.00		15.00	6.075
6123	160.00		7.00	3.024
1698***	160.00		10.00	4.050
1689	160.00		20.00	8.640
1494	180.00		4.00	1.945
1486*	180.00	:==	20.00	9.720
1692***	180.00	: 	20.00	9.253
1693***	180.00	:	20.00	9.423
1710	185.00		16.80	8.391
1481	200.00		10.00	5.400
1779	200.00	==	15.00	8.100
1483	200.00	<u></u>	20.00	10.800
1691***	200.00		20.00	10.340

EMIRATES EXTRUSION FACTORY LLC

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1694***	208.00	(CE	20.00	10.990
1478*	220.00	8 ± €1	20.00	11.880
1479***	220.00	8 	20.00	10.800

* ROUND CORNERS

** CHECK WITH TECHNICAL PERSON

*** TAPER SIDES

SQUARE BARS

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1854	14.50	150000 150000		0.567
9198	15.00	K alito lo	75.	0.607
1350	16.00	S alas A	7.7	0.695
1449**	20.00	M assa s	7.5	1.066
1753	20.00	(18.8.)		1.080
6743	22.00	8 88 8	(1.307
1547	25.00	1 4 = 1		1.688
1546	40.00	(** *		4.320
1772	50.00			6.750
1475	100.00	122		27.000

* ROUND CORNERS

ROUND BARS

DIE NO:	A (mm)	B (mm)	T (mm)	Weight KG/M
1432	10.00	Special Control	55.75	0.212
1413	16.00	S 2	∞	0.545
1672	25.00	S am a	- A.B.	1.325
1500	25.40	:==:		1.394
1859	30.00	:		1.909
1673	50.00	8 = 4		5.302
1548	76.20	:==s		12.313

